1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
| import os
import cv2 import numpy as np import maxflow import matplotlib.pyplot as plt from medpy import metric from PIL import Image, ImageDraw
left_mouse_down = False right_mouse_down = False foreground_index = 0 background_index = 0 foreground_lines = list() background_lines = list()
class GraphMaker: foreground = 1 background = 0 segmented = 1 default = 0.5 MAXIMUM = 1000000000
def __init__(self, filename): self.image = None self.graph = None self.segment_overlay = None self.mask = None self.filename:str = filename self.load_image(filename) self.background_seeds = [] self.foreground_seeds = [] self.background_average = np.array(3) self.foreground_average = np.array(3) self.nodes = [] self.edges = []
def load_image(self, filename): self.filename = filename self.image = cv2.imread(filename) self.graph = None self.segment_overlay = np.zeros(self.image.shape[:2]) self.mask = None
def add_seed(self, x, y, type): if self.image is None: print('Please load an image before adding seeds.') if type == self.background: if not self.background_seeds.__contains__((x, y)): self.background_seeds.append((x, y)) elif type == self.foreground: if not self.foreground_seeds.__contains__((x, y)): self.foreground_seeds.append((x, y))
def create_graph(self): if len(self.background_seeds) == 0 or len(self.foreground_seeds) == 0: print("Please enter at least one foreground and background seed.") return
print("Making graph") print("Finding foreground and background averages") self.find_averages()
print("Populating nodes and edges") self.populate_graph()
def find_averages(self): self.graph = np.zeros((self.image.shape[0], self.image.shape[1])) print(self.graph.shape) self.graph.fill(self.default) self.background_average = np.zeros(3) self.foreground_average = np.zeros(3)
for coordinate in self.background_seeds: self.graph[coordinate[1] - 1, coordinate[0] - 1] = 0 self.background_average += self.image[coordinate[1], coordinate[0]]
self.background_average /= len(self.background_seeds)
for coordinate in self.foreground_seeds: self.graph[coordinate[1] - 1, coordinate[0] - 1] = 1 self.foreground_average += self.image[coordinate[1], coordinate[0]]
self.foreground_average /= len(self.foreground_seeds)
def populate_graph(self): self.nodes = [] self.edges = [] for (y, x), value in np.ndenumerate(self.graph): if value == 0.0: self.nodes.append((self.get_node_num(x, y, self.image.shape), self.MAXIMUM, 0))
elif value == 1.0: self.nodes.append((self.get_node_num(x, y, self.image.shape), 0, self.MAXIMUM))
else: self.nodes.append((self.get_node_num(x, y, self.image.shape), 0, 0))
for (y, x), value in np.ndenumerate(self.graph): if y == self.graph.shape[0] - 1 or x == self.graph.shape[1] - 1: continue my_index = self.get_node_num(x, y, self.image.shape)
neighbor_index = self.get_node_num(x + 1, y, self.image.shape) g = 1 / (1 + np.sum(np.power(self.image[y, x] - self.image[y, x + 1], 2))) self.edges.append((my_index, neighbor_index, g))
neighbor_index = self.get_node_num(x, y + 1, self.image.shape) g = 1 / (1 + np.sum(np.power(self.image[y, x] - self.image[y + 1, x], 2))) self.edges.append((my_index, neighbor_index, g))
def cut_graph(self): self.segment_overlay = np.zeros_like(self.segment_overlay) self.mask = np.zeros_like(self.image, dtype=bool) g = maxflow.Graph[float](len(self.nodes), len(self.edges)) nodelist = g.add_nodes(len(self.nodes))
for node in self.nodes: g.add_tedge(nodelist[node[0]], node[1], node[2])
for edge in self.edges: g.add_edge(edge[0], edge[1], edge[2], edge[2])
flow = g.maxflow() print("maximum flow is {}".format(flow))
for index in range(len(self.nodes)): if g.get_segment(index) == 1: xy = self.get_xy(index, self.image.shape) self.segment_overlay[xy[1], xy[0]] = 1 self.mask[xy[1], xy[0]] = (True, True, True)
def swap_overlay(self, overlay_num): self.current_overlay = overlay_num
def save_image(self, outfilename): if self.mask is None: print('Please segment the image before saving.') return print(outfilename) to_save = np.zeros_like(self.image)
np.copyto(to_save, self.image, where=self.mask) cv2.imwrite(outfilename, to_save) save_stroke = np.zeros_like(self.image) np.copyto(save_stroke, self.image) for foreground_line in foreground_lines: self.draw_polyline(save_stroke, foreground_line, (0, 0, 255)) for background_line in background_lines: self.draw_polyline(save_stroke, background_line, (255, 0, 0)) cv2.imwrite(outfilename[: -4] + "storke.jpg", save_stroke) return self.segment_overlay
@staticmethod def evaluate(prediction_path, reference_path): reference = cv2.imread(reference_path) prediction = cv2.imread(prediction_path) dice = metric.binary.dc(prediction, reference) hd = metric.binary.hd95(prediction, reference) sensitivity = metric.binary.sensitivity(prediction, reference) specificity = metric.binary.specificity(prediction, reference) accuracy = metric.positive_predictive_value(prediction, reference) print("{:.2f} {:.2f} {:.2f} {:.2f} {:.2f}".format(dice, hd, sensitivity, specificity, accuracy))
@staticmethod def get_node_num(x, y, array_shape): return y * array_shape[1] + x
@staticmethod def get_xy(nodenum, array_shape): return (nodenum % array_shape[1]), (int(nodenum / array_shape[1]))
@staticmethod def draw_polyline(img, lines, color): for i in range(1, len(lines)): cv2.line(img, lines[i-1], lines[i], color=color, thickness=3)
def onMouseClick(event, x, y, flags, param): global left_mouse_down global right_mouse_down global foreground_index global background_index global foreground_lines global background_lines if event == cv2.EVENT_LBUTTONDOWN: foreground_lines.append([]) left_mouse_down = True elif event == cv2.EVENT_LBUTTONUP: foreground_index = foreground_index + 1 left_mouse_down = False elif event == cv2.EVENT_RBUTTONDOWN: background_lines.append([]) right_mouse_down = True elif event == cv2.EVENT_RBUTTONUP: background_index = background_index + 1 right_mouse_down = False elif event == cv2.EVENT_MOUSEMOVE: if left_mouse_down: param.add_seed(x, y, param.foreground) foreground_lines[foreground_index].append((x, y)) elif right_mouse_down: param.add_seed(x, y, param.background) background_lines[background_index].append((x, y))
if __name__ == '__main__': files = os.walk("data/img") for path, dir_list, file_list in files: for file in file_list: foreground_index = 0 foreground_lines.clear() background_lines.clear() background_index = 0 marker = GraphMaker(path + "/" + file) img = cv2.imread(path + "/" + file) cv2.imshow(file, img) cv2.setMouseCallback(file, onMouseClick, marker) cv2.waitKey(0) cv2.destroyAllWindows() marker.create_graph() marker.cut_graph() marker.save_image("data/res/" + file) marker.evaluate("data/res/" + file, "data/mask/" + file[:-4] + ".png")
|